Olha received her bachelor's and master's degrees in Chemistry from Taras National University of Kyiv. In 2022, Olha had an internship at Saarland University, Germany under the supervision of Professor Dominik Munz. She joined PME at the University of Chicago in March 2023 as a non-degree student and currently works under the supervision of Prof. Chong Liu and Prof. Paul Nealey.
Olha's research focuses on addressing water quality and energy challenges through cutting-edge chip technology. She has fabricated SiNx membranes with isoporous structures, enabling precise ion transport measurement and the deposition of 2D materials. Collaborating with Argonne National Laboratory, Olha has developed liquid cell platforms featuring SiNx membranes with gold nanoparticles for in-situ Transmission Electron Microscopy (TEM). Additionally, her work includes the fabrication of SiNx membranes with chromium gratings tailored for TEM applications.
The Role of Water Volume Fraction on Water Adsorption in Anion Exchange Membranes
Gervasio Zaldivar, Ruilin Dong, Joan M Montes de Oca, Ge Sun, Riccardo Alessandri, Christopher G Arges, Shrayesh N Patel, Paul F Nealey, Juan J de Pablo, Macromolecules, 2025
Role of Crosslinking and Backbone Segmental Dynamics on Ion Transport in Hydrated Anion-Conducting Polyelectrolytes
Zhongyang Wang, Kai Wang, Christopher Eom, Yuxi Chen, Ge Sun, Mincheol Kim, Joan M Montes de Oca, Dongyue Liang, Kushal Bagchi, Shrayesh N Patel, Juan J de Pablo, Paul F Nealey, Advanced Functional Materials, 2025
IEC-Independent Coupling between Water Uptake and Ionic Conductivity in Anion-Conducting Polymer Films
Joan M Montes de Oca, Ruilin Dong, Gervasio Zaldivar, Ge Sun, Zhongyang Wang, Shrayesh N Patel, Paul F Nealey, Juan J de Pablo, Macromolecules, 2025
Water-mediated ion transport in an anion exchange membrane
Zhongyang Wang, Ge Sun, Nicholas HC Lewis, Mrinmay Mandal, Abhishek Sharma, Mincheol Kim, Joan M Montes de Oca, Kai Wang, Aaron Taggart, Alex B Martinson, Paul A Kohl, Andrei Tokmakoff, Shrayesh N Patel, Paul F Nealey, Juan J de Pablo. Nature Communications. 2025.
Directed self-assembly of block copolymer films on atomically-thin graphene chemical patterns
Chang, TH; Xiong, SS; Jacobberger, RM; Mikael, S; Suh, HS; Liu, CC; Geng, DL; Wang, XD; Arnold, MS; Ma, ZQ; Nealey, PF. Directed self-assembly of block copolymer films on atomically-thin graphene chemical patterns. Scientific Reports. 2016. Vol. 6, Pg. 31407.
Directed self-assembly of high-chi block copolymer for nano fabrication of bit patterned media via s
Xiong, S. S. Chapuis, Y. A. Wan, L. Gao, H. Li, X. Ruiz, R. Nealey, P. F.. Directed self-assembly of high-chi block copolymer for nano fabrication of bit patterned media via s. Nanotechnology. 2016. Vol. 27, Pg. 415601.
Directed Self-Assembly of Triblock Copolymer on Chemical Patterns for Sub-10-nm Nanofabrication via
Xiong, SS; Wan, L; Ishida, Y; Chapuis, YA; Craig, GSW; Ruiz, R; Nealey, PF. Directed Self-Assembly of Triblock Copolymer on Chemical Patterns for Sub-10-nm Nanofabrication via. ACS Nano. 2016. Vol. 10, Pg. 7855–7865.
Roadmap on optical metamaterials
Urbas, A. M. Jacob, Z. Dal Negro, L. Engheta, N. Boardman, A. D. Egan, P. Khanikaev, A. B. Menon, V. Ferrera, M. Kinsey, N. DeVault, C. Kim, J. Shalaev, V. Boltasseva, A. Valentine, J. Pfeiffer, C. Grbic, A. Narimanov, E. Zhu, L. X. Fan, S. H. Alu, A. Poutrina, E. Litchinitser, N. M. Noginov, M. A. MacDonald, K. F. Plum, E. Liu, X. Y. Nealey, P. F. Kagan, C. R. Murray, C. B. Pawlak, D. A. Smolyaninov, I. I. Smolyaninova, V. N. Chanda, D.. Roadmap on optical metamaterials. Journal of Optics. Vol. 18, Pg. 093005.
Post-directed-self-assembly membrane fabrication for in situ analysis of block copolymer structures
J Ren, L E Ocola, R Divan, D A Czaplewski, T Segal-Peretz, S Xiong, R J Kline, C G Arges and P F Nealey. Post-directed-self-assembly membrane fabrication for in situ analysis of block copolymer structures. Nanotechnology. 2016. Vol. 27, Pg. 435303.